Calculus I
 Lecture 6

Feb 19-8:47 AM

Class QZ 3
Evaluate $\lim _{x \rightarrow-1} \frac{x^{2}+6 x+5}{x^{2}-3 x-4}=\frac{(-1)^{2}+6(-1)+5}{(-1)^{2}-3(-1)-4}=\frac{1-6+5}{1+3-4}=\frac{0}{0}$ \checkmark Id.
$\lim _{x \rightarrow-1} \frac{x^{2}+6 x+5}{x^{2}-3 x-4}=\lim _{x \rightarrow-1} \frac{(x+1)(x+5)}{(x+1)(x-4)}=\lim _{x \rightarrow-1} \frac{x+5}{x-4}=\frac{-1+5}{-1-4}$

$$
=\frac{4}{-5}=-\frac{4}{5}
$$

Class QE 4
Factor Completely $\longrightarrow A^{2}-B^{2}=(A+B)(A-B)$

1) $x^{3}-64 x=x\left(x^{2}-64\right)=x(x+8)(x-8) v$

$$
\text { 2) } 2 x^{3}+250=2\left(x^{3}+125\right) \quad 2(x+5)\left(x^{2}-5 x+25\right), B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
$$

1)

Evaluate $\lim \sqrt{x^{3}-5 x}=\sqrt{5^{3}-5(5)}=\sqrt{125-25}$

$$
x \rightarrow 5 \quad=\sqrt{100}=10
$$

2) Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}+x-6}=\frac{2^{2}-4(2)+4}{2^{2}+2-6}=\frac{0}{0}$ I.F.

$$
\begin{gathered}
\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{2}+x-6}=\lim _{x \rightarrow 2} \frac{(x-2)(x-2)}{(x-2)(x+3)}=\lim _{x \rightarrow 2} \frac{x-2}{x+3}=\frac{2-2}{2+3} \\
=\frac{0}{5}=0
\end{gathered}
$$

$$
|x|= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}
$$

$$
\lim _{x \rightarrow 0} \frac{x}{|x|} \text { D.N.E. }
$$

Since

$$
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|} \neq \lim x \rightarrow 0^{-} \frac{x}{|x|}
$$

Feb 13-9:10 AM

1) Evaluate $\lim _{x \rightarrow 2} \frac{x-2}{x^{3}-8}=\frac{2-2}{2^{3}-8}=\frac{0}{0}$ I.F.

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{3}-8}=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)\left(x^{2}+2 x+4\right)}=\lim _{x \rightarrow 2} \frac{1}{x^{2}+2 x+4}
$$

2) Evaluate $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\frac{4-4}{\sqrt{4}-2}=\frac{0}{0}=\frac{1}{12}$

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{(x-4)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}=\lim _{x \rightarrow 4}(\sqrt{x}+2) \\
& \text { FOIL E. Simplify }
\end{aligned}=\sqrt{4}+2=4 \mathrm{~J}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1\right] \\
0 x>0
\end{array} \\
& \lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x}=\lim _{x \rightarrow 00^{-}}(-1)=-1 \\
& \rightarrow \quad \rightarrow
\end{aligned}
$$

Given $\quad f(t)=\left\{\begin{array}{lll}t^{2}-4 & \text { if } t<2 & \text { Piece-wise } \\ \sqrt{t-2}+3 & \text { if } t>2 & \text { function. }\end{array}\right.$

Feb 13-9:24 AM

Given

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x+3} & x \neq-3 \\ k & x=-3\end{cases}
$$

Find k such that $f(-3)=\lim _{x \rightarrow-3} f(x)$

$$
\begin{array}{r}
x \rightarrow-3 \\
K=\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3} \text { After } \begin{array}{c}
\text { Plug in } \\
0 \\
K=\lim _{x \rightarrow-3} \\
\frac{(x+3)(x-3)}{x+3}=\lim _{x \rightarrow-3}(x-3)=-3-3=-6 \\
K=-6
\end{array}, ~
\end{array}
$$

Given $\quad f(x)=\frac{x-1}{x+1}$
Evaluate $\lim _{x \rightarrow 2} \frac{f(x)-\frac{1}{3}}{x-2}=\lim _{x \rightarrow 2} \frac{\left(\frac{x-1}{x+1}-\frac{1}{3}\right.}{2-2}=\frac{0}{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{f(x)-\frac{1}{3}}{x-2}=\lim _{x \rightarrow 2} \frac{\frac{x-1}{x+1}-\frac{1}{3}}{x-2} \\
&=\lim _{x \rightarrow 2} \frac{3(x+1) \cdot \frac{x-1}{x+1}-3(x+1) \cdot \frac{1}{3}}{3(x+1)(x-2)}=\lim _{x \rightarrow 2} \frac{3(x+1)}{3(x-1)-(x+1)} \\
&=\lim _{x \rightarrow 2} \frac{3 x-3-x-1)(x-2)}{3(x+1)(x-2)}=\lim _{x \rightarrow 2} \frac{\frac{2(x-2)}{2 x-4}}{3(x+1)(x-2)} \\
&=\lim _{x \rightarrow 2} \frac{2}{3(x+1)}=\frac{2}{9}
\end{aligned}
$$

Feb 13-9:40 AM

Given $\quad f(x)=\frac{1}{x^{2}}$
Evaluate $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\frac{7}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}(x+h)^{2} \cdot \frac{1}{(x+h)^{2}}-x^{2}(x+h)^{2} \cdot \frac{1}{x^{2}}}{h x^{2}(x+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}-(x+h)^{2}}{h x^{2}(x+h)^{2}}=\lim _{h \rightarrow 0} \frac{x^{2}-x^{2}-2 x h-h^{2}}{h x^{2}(x+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{\not h x^{2}(x+h)^{2}}=\frac{-2 x-0}{x^{2}(x+0)^{2}}=\frac{-2 x}{x^{2} \cdot x^{2}} \\
& =\frac{-2}{x^{3}}
\end{aligned}
$$

Graph $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=0 \\
& \lim _{x \rightarrow-\infty} f(x)=0
\end{aligned}
$$

Feb 13-9:53 AM

